
How to be a 1337 h4ck3r:
Git + Linux

An introduction to Git, version control, and Linux

by Samsara Counts, Pat Cody, and Joseph Schiarizzi

Slides adapted from Neel Shah and Phil Lopreiato

DISCLAIMER: GW ACM does not promote
illegal and/or unethical activity (hacking or otherwise), and
that’s not the focus of this workshop!

Most importantly, computer scientists come in
ALL forms and that’s why our field is so great!
To quote Melinda Gates:
“Not every good idea comes wrapped in a hoodie.”

“It’s time the world starts recognizing that the next
Bill Gates might not look anything like the last one.”

1337 h4ck3rz??
● Why 1337 h4ck1ng?
...well, you’ve seen the hacker stereotype, that’s
not any sort of true. (smh)

The cool thing about hackers is that they’re
powerful af. And you know what?

So are you, when you learn how to use Git and
the command line!

1337 h4ck3rz??, cont.
● Why Git?
● Why Linux?

git and linux are the essential tools
of good programming: streamlining
your workflow and keep track of
different versions of your code

Goals of this workshop:

1. you know the basic tools to be a good CS and
software developer

2. You have a jumping off point to build up a
digital portfolio and dive into software projects

This workshop
PART I: Linux and UNIX-like environments

A. Linux background, the command line, + commands
B. Command line hacking: make a directory!
C. More background!
D. More Command line hacking: edit a file in vim!

PART II: Git and version control
 A. git background
 B. get git; try out github
 C. github background
 D. Clone our git repo + add a file; make your first pull request

Your Workshop TODO:
1. Put away your laptop
(until we say so) and turn
off your phone

2. Follow along!

3. Ask lots of questions

4. When it’s time to try
things out, READ OUR
DOCS.

Resources + Documents
for this workshop

1. Unix/Git Workflow
Cheatsheet

2. Git Cheatsheet
3. Workshop Repository

+ README
4. Presentation Slides

http://acm.seas.gwu.edu/ws/git-linux-17/unix_cheatsheet.pdf
http://acm.seas.gwu.edu/ws/git-linux-17/unix_cheatsheet.pdf
http://acm.seas.gwu.edu/ws/git-linux-17/git_cheatsheet.pdf
https://github.com/gw-acm/git-linux-2017
https://github.com/gw-acm/git-linux-2017
https://goo.gl/52oDfP

PART I: Linux and UNIX-like
environments

“In thin socks, I'm butthurt...crashing
Linux server”

- Busdriver, “Worlds To Run (ft.
Anderson.Paak & milo)”

Wat is a Linux.
● An Open Source Operating

System modelled on UNIX.
● Always FREE and community

built & maintained.
● All supercomputers use linux

and most servers.

Tux

https://www.destroyallsoftware.com/talks/wat

History of Linux.
● Released on September 17th, 1991

by Linus Torvald

● Took off fast to escape Microsoft
monopoly

● Many different distributions now
available

Tux

Wat is a command line interface

● a text-based application for viewing, handling,
and manipulating files directly on your
computer

● What 1337
 h4ck3rz/
 Comp Scis use

https://www.destroyallsoftware.com/talks/wat

Basic Linux commands

ls [dirpath] - list files in directory

cd [dirpath] - change directory to dir

mv [file] [dirpath] - move file to dir

mkdir [dirname] - make directory dirname

rm [file] - delete a file/directory*
* - CAN’T BE UNDONE, rm’ing a directory needs -r recursive option

> [filename] - make a new file called filename

~ - reference to the home directory

. - reference to this (current) directory

.. - reference to directory above
current directory

basic Linux names/commands, cont.

It’s hacking time! (part I)

Do now (on your laptop):
1. open

https://github.com/gw-acm/git-linux-2017 for
UNIX cheat sheet, basic instructions, + links

2. https://acm.seas.gwu.edu/ws/git-linux-17/
index.html

3. Then, - Mac/Unix: open Terminal (command
line)

- Windows: download git bash and open it

https://github.com/gw-acm/git-linux-2017
https://acm.seas.gwu.edu/ws/index.html
https://acm.seas.gwu.edu/ws/index.html

Do now, cont: (on the command line):

1. list visible directories from current position
2. Make a directory
3. Navigate into that directory

4. make a file called ‘new.txt’
5. Copy a file from another location and put it in

this folder (.)
6. Remove that file

DEMO I!

pwd - print working directory

head [file] - show first 10 lines of file

tail [file] - show last 10 lines of file

clear - clear screen

grep “expression” [dir] - search for expression in dir

More Linux commands

Intro to vim
● vim is a multipurpose text

editor for the command line
● The name vim comes from “vi

improved,” where vi is an
older, less cool command line
text editor

vim editing modes
● normal mode allows you to

highlight segments of text, jump to
line numbers, and enter commands
like write and quit

● insert mode lets you enter and delete text
● visual mode lets you copy and paste

Vim commands
vim [filename] - open [filename] with vim
esc - go back to normal mode
i - go to insert
:wq - write (save) and quit
:w - write
:q! - force quit (doesn’t save)

It’s hacking time! (part II)

Do now (on the command line):
1. enter ‘cd’
2. Navigate back to directory
3. enter vim and edit ‘new.txt’
4. In vim, edit that file
5. Write and exit vim
6. Look at the first lines of that file
7. Remove that file

DEMO II!

PART II: GIT and version
control

Slides adapted from Neel Shah and Phil Lopreiato

Git your life together

What is git?
● Git is a type of version control software

○ It’s a way to track changes to files

● How would you do that?
○ Many zip files
○ Timestamped directories
○ A specially ordered collection of stones
○ Magic?

● Somebody smart decided to
synchronize their files with a local
database - this is local version
control

How is git structured?

● You keep projects in
repositories (repos)
that are backed up on a
server

● you work in local copies
of repos, then push
changes to server

What Is It?
● But what if you want to share

your changes with someone
else?
○ Easy - just send the

database to a server!
● This is called centralized

version control
● But what happens if the

central server goes down?

What Is It?

● Just make clients check out the full contents of
the repository then!
○ Now, everybody who works on a project

has a full copy of the history in case
something happens

● This is called distributed version control
○ Many common VCS systems use this

(git or Mercurial, for example)
● GitHub (github.com) is a popular

web-based Git repository hosting service

https://www.github.com

Git Ancient History

● In 2005, the Linux Kernel project needed a
new source control system

● Linus Torvalds set out to write his own
○ Popular version control software at the

time was not “good enough” for him
○ Needed to be distributed and protect

against corruption
● Development began April 3, the project was

announced April 6, became self-hosting on
April 7, and used in the kernel by June

How does it work?
● Git is a Directed Acyclic Graph of

repository “snapshots”
● Every change is initially done

locally
● Every change has verified integrity

○ The repository is
“checksummed” after every
change

○ That checksum is used to refer
to each commit

“In many ways you can just see Git as a filesystem
— it is content-addressable, and it has a notion of
versioning, but I really really designed it coming at
the problem from the viewpoint of a filesystem
person (hey, kernels is what I do), and I actually
have absolutely zero interest in creating a
traditional SCM system.” - Linus

It’s (git) hacking time!
(part III)

How can I “Git” Git?

● http://git-scm.com/downloads
● You can now use git in a terminal or “Git Bash” on

WindowsConfiguration...

http://git-scm.com/downloads

Do now: make an account!

● Go to https://github.com/join
and create an account
(or log in)

● Get familiar with git!
○ https://try.github.io/

https://github.com/join
https://try.github.io/

(Demo unnecessary)

What’s this GitHub?
● GitHub makes coding “social” by

providing a Git repository hosting
service that maintains all of the
“distributed” features of Git and adds
a social aspect
○ Issue Trackers
○ Code Releases
○ Project Websites
○ Anyone can contribute!

git clone “repo url” - create local copy of repo
on your computer

git add * - add all files to commit

git commit -m “init” - save all your edits with
message “init”

git push - push your changes to origin branch

of repo you’re working on

basic git workflow commands

branching on git
● on a project, you're going to have a bunch of different

features + ideas in progress at a time – some of which are
ready to go, and others which aren’t

● branch - an environment where you can try out new ideas.
Changes you make on a (named) branch don't affect the
master branch.

● Branching exists to help you manage this workflow.

Cloning, forking, and branches

git checkout -b “new branch” - switch to new
branch

git checkout “branch” - switch to branch

git push origin “branch” - push changes to
origin of branch
you’re working
on

branching git workflow commands

Distributed versions, visualized

It’s (github) hacking
time! (part IV)

Do now (on github + command line):
1. Full instructions in the README:

https://github.com/gw-acm/git-linux-2017
2. fork the above repository on your account
3. On the command line, navigate into the

directory you made
4. Clone your fork of the repository on your

computer
5. Navigate into that repository
6. Use touch to make a .txt file with your name

on it (ex: samsara.txt)

https://github.com/gw-acm/git-linux-2017

Do now (on github + command line):

7. Tell git you made changes with add
8. Commit those changes with a nice
 Message
9. Push them to your forked repo
10. On github, submit a pull request to

our original repository

DEMO IV!

Links + Further reading
● GitHub workflow GUIDES

○ https://guides.github.com/activities/hello-world/
○ http://readwrite.com/2013/09/30/understanding-github-a-journey-for-beginners-part-1
○ http://blog.udacity.com/2015/06/a-beginners-git-github-tutorial.html

● Git branch guides
○ https://guides.github.com/introduction/flow/

● Git documentation
○ https://git-scm.com/docs
○ http://wildlyinaccurate.com/a-hackers-guide-to-git/

● Some other SCMs
○ Mercurial
○ SubVersion

● Some other Git hosts
○ Phabricator
○ Bitbucket
○ GitLab

https://guides.github.com/activities/hello-world/
http://readwrite.com/2013/09/30/understanding-github-a-journey-for-beginners-part-1
http://blog.udacity.com/2015/06/a-beginners-git-github-tutorial.html
https://guides.github.com/introduction/flow/
https://git-scm.com/docs
http://wildlyinaccurate.com/a-hackers-guide-to-git/
https://www.mercurial-scm.org/
http://subversion.apache.org/
http://phabricator.org/
https://bitbucket.org/
https://about.gitlab.com/

GitHub
● Example GitHub profiles:

○ https://github.com/aaroncoplan
○ https://github.com/samsaranc

● Example Repositories:
○ Linux
○ The Blue Alliance

● Example Organization:
○ GWCloudLab

● Explore other repos and projects:
○ https://github.com/explore

https://github.com/aaroncoplan
https://github.com/samsaranc
https://github.com/torvalds/linux
https://github.com/the-blue-alliance/the-blue-alliance
https://github.com/gwcloudlab
https://github.com/explore

Happy h4ck1ng!

Fin.

