
Reinforcement Learning in the Robosoccer
Domain with Monte Carlo Methods

Anderson Thomas Collin Duncan

The George Washington University

Samsara Counts

Abstract

We describe a reinforcement learning algorithm capable of training pairs of agents to handle the robotic
soccer domain in a playoff format using Reinforcement Learning with Monte Carlo methods. We then
explore how we adapted reinforcement learning methods for policy evaluation and action selection in this
distributed, real-time, partially observable, noisy domain in a playoff format. We adapted that strategy
to model, on top of Simha’s framework, a series of playoffs between teams composed of pairs of players.
We then present a sample of our results to demonstrate that a learned policy can perform comparably to
hand-coded policies provided by Dr. Simha.

I. Literature Review

i. Introduction

In 1997, several researchers, among them Sanderson and Kitano, et. al., proposed Robotic soccer
as a new domain for exploration in Machine Learning research focused on creating algorithms
for gameplay [Kitano et. al., 1997][Sanderson, 1997]. This proposal was a consequence of the
enormous growth of the Artificial Intelligence research: in the past 20 years, human experts in
complex, finite games such as chess and Go have been defeated by algorithms. Within the same
year, the RoboCup competition emerged, a tournament between robotic soccer players who use
different Machine Learning algorithms to learn and compete in the game of soccer.

ii. Evolution of Our Methodology

In deciding upon our model for a small instance of Robotic soccer playoffs, we initially considered
using the 3 vs. 2 keepaway domain, a subproblem of robotic soccer domain [Stone et. al.] We
modeled our problem using Stone’s 3-2 keepaway algorithm for offensive playing, with the goal
as the third player. The parameters we picked were the Euclidean distance between players on
the same team, along with the angles between players. However, we encountered difficulty when
when we realized the state space was infinite, due to the nature of distance and theta as continuous
values.

Refining our model, we then decreased the size of our state space by discretizing the field with
a 3x3 grid. Furthermore, we defined four parameters of each state to take a finite range of values.

1

Continuous Algorithms • Final Project

Hence the locations of our grid = {0, 1, 2, 3, 4, 5, 6, 7, 8}.

II. Methods

In our algorithm we adapt Dr. Simha’s soccerJar framework to support a playoff between teams
of player pairs that learns a strategies with Reinforcement Learning using Monte Carlo methods.
Inherently, this represents successive choices of the actions as a Markov Decision Process, where
the game is broken down into episodes with a goal scored as our terminal state. Ultimately, we
chose to represent the State Space S as a function of four parameters: S(Bs, THB, TL, OL), where:

• Bs = {−1, 0, 1} represents a set of states of the ball
• THB = {T, F} is a boolean that records whether our team has possession of the ball
• TL = {(0, 0)...(8, 8)} where each tL is a tuple of each player on our team’s location on the

field
• OL = {(0, 0)...(8, 8)} where each oL is a tuple of each player on our opponen’s team’s location

on the field

The cardinality of our state space is |S| = 3 · 2 · 29 · 29 = 1572864 states.

We define our high-level actions a ∈ A as:

• moveToBall() directs the agent to move towards the ball, whether stationary or moving.
• holdBall() directs the agent to stand still while holding the ball, if on defense, we...
• passBall() pass the ball to player p
• blockPass() where we intercept a pass from opposing players.

Move to Ball, Pass the Ball, and Hold Ball are fairly straightforward.
Block Pass directs the player to move between the opponent with the ball and another opponent

that we expect to receive it. The method includes getOpen(), which used to be another one of our
actions that we dropped to reduce the size of the state space. Then, we move to a position that is
away from opponents towards the goal.

The reward r for a given time step is determined by the previous time step?s reward minus the
reward at this time step. We can reward based on:

• Our team scored goal and we return r = 1

2

Continuous Algorithms • Final Project

• Other team scored goal and we return r = −1
• else we return r = 0

We refer to the players on our team as P and the opposing players as O. P1 is the player with
the ball. The following are our key functions:

• Qk(s, a accepts an action and state and returns the value of taking that action in that state at
step k.

• π is a policy, a stochastic strategy that chooses an action a ∈ A for a given a state s ∈ S.
• π(s, a) accepts state, s and returns the action to be taken (with the highest reward)
• R(s, a)

Once an episode is over, we reward all of those state-action pairs. In this case the episode ends
when the goal is scored. Hence the agent is retroactively learning and acting off of knowledge of
previous episodes. Once it completes a new episode, it adds the reward to its State-Action-Value
Map (savMap) and updates the average of those state actions accordingly. Then, when that state
comes around, we pick the best action based off of those updates values. chooseMove() returns an
action, then we add this state-action pair to sacList.

A sample diagram of our game model on the grid.

3

Continuous Algorithms • Final Project

Table 1: Sample Playoff results

Team

Number Name Goals Penalties Fouls Score

0 Pepe 0 782 0 985.2
1 Schlemiels 1290 0 985.2 2072

e44e

III. Results

The above are some sample results after a given instance of our team, Pepe is the best team versus
the Schlemiels team, featuring policies hand-coded by Dr. Simha. Here is our sample output after
running a 9 game-playoff with our trained policies between the aforementioned teams.

Though our team does not yet defeat the opponents with hand-coded policies, we believe there is
full potential for our algorithm to outperform them with enough tweaking and refinement of the

4

Continuous Algorithms • Final Project

helper functions of specific actions.

References

[Brown, 2015] Brown, Brandon "Playing Blackjack with Monte Carlo Methods", http://outlace.
com/rlpart2.html

[Kitano et. al., 1997] Kitano, H. et al. "RoboCup: A challenge Problem for AI" AI Magazine , v. 18,
n. 1, p. 73-85, Spring 1997.

[Sanderson, 1997] Sanderson, A. "Micro-Robot World Cup Soccer Tournament (MiroSot)". IEEE
Robotics and Automation Magazine, pg.15, December 1997.

[Stone et. al.] Stone, Peter and Sutton, Richard S. and Singh, Satinder P. "Reinforcement Learning
for 3 vs. 2 Keepaway", RoboCup, vol. 2019, 2000, http://dblp.uni-trier.de/db/conf/
robocup/robocup2000.html#StoneSS00, Springer

[Sutton and Barto, 1998] Sutton, R.S. and Barto, A.G. (1998). Reinforcement Learning: An Intro-
duction, https://books.google.com/books?id=CAFR6IBF4xYC, Bradford Book

5

http://outlace.com/rlpart2.html
http://outlace.com/rlpart2.html
http://dblp.uni-trier.de/db/conf/robocup/robocup2000.html#StoneSS00
http://dblp.uni-trier.de/db/conf/robocup/robocup2000.html#StoneSS00
https://books.google.com/books?id=CAFR6IBF4xYC

	Literature Review
	Introduction
	Evolution of Our Methodology

	Methods
	Results

